Modeling spatial and temporal variability by Bayesian multilevel model
نویسندگان
چکیده
Introduction The early detection of outbreaks of diseases is one of the most challenging objectives of epidemiological surveillance systems. In order to achieve this goal, the primary foundation is using those big surveillance data for understanding and controlling the spatiotemporal variability of disease through populations. Typically, public health’s surveillance system would generate data with the big data characteristics of high volume, velocity, and variety. One common question of big data analysis is most of the data have the multilevel or hierarchy structure, in other word the big data are non-independent. Traditional multilevel or hierarchical model can only deal with 2 or 3 hierarchical data structure, which bound health big data further research for modeling, forecast and early-warning in the public health surveillance, in particular involving complex spatial and temporal variability of Infectious Diseases in the reality.
منابع مشابه
Assessment of Neonate's Congenital Hypothyroidism Pattern Using Poisson Spatio-temporal Model in Disease Mapping under the Bayesian Paradigm during 2011-18 in Guilan, Iran
Background: Congenital Hypothyroidism (CH) is one of the reasons for mental retardation and defective growth in neonates. It can be treated if it is diagnosed early. The congenital hypothyroidism can be diagnosed using newborn screening in the first days after birth. Disease mapping helps to identify high-risk areas of the disease. This study aimed to evaluate the pattern of CH using the Poisso...
متن کاملImpact of spatial-temporal variations of climatic variables on summer maize yield in North China Plain
Summer maize (Zea mays L.) is one of the dominant crops in the North China Plain (NCP). Its growth is greatly influenced by the spatial-temporal variation of climatic variables, especially solar radiation, temperature and rainfall. The WOFOST (version 7.1) model was applied to evaluate the impact of climatic variability on summer maize yields using historical meteorological data from 1961 to 20...
متن کاملDetermination of Spatial-Temporal Correlation Structure of Troposphere Ozone Data in Tehran City
Spatial-temporal modeling of air pollutants, ground-level ozone concentrations in particular, has attracted recent attention because by using spatial-temporal modeling, can analyze, interpolate or predict ozone levels at any location. In this paper we consider daily averages of troposphere ozone over Tehran city. For eliminating the trend of data, a dynamic linear model is used, then some featu...
متن کاملAN ADDITIVE MODEL FOR SPATIO-TEMPORAL SMOOTHING OF CANCER MORTALITY RATES
In this paper, a Bayesian hierarchical model is used to anaylze the female breast cancer mortality rates for the State of Missouri from 1969 through 2001. The logit transformations of the mortality rates are assumed to be linear over the time with additive spatial and age effects as intercepts and slopes. Objective priors of the hierarchical model are explored. The Bayesian estimates are quite ...
متن کاملA Bayesian Multilevel Modeling Approach for Data Query in Wireless Sensor Networks
In power-limited Wireless Sensor Network (WSN), it is important to reduce the communication load in order to achieve energy savings. This paper applies a novel statistic method to estimate the parameters based on the realtime data measured by local sensors. Instead of transmitting large real-time data, we proposed to transmit the small amount of dynamic parameters by exploiting both temporal an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2017